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Abstract

We consider accurately answering smooth queries while preserving differential privacy. A
query is said to be K-smooth if it is specified by a function defined on [−1, 1]d whose partial
derivatives up to order K are all bounded. We develop an ǫ-differentially private mechanism
for the class of K-smooth queries. The major advantage of the algorithm is that it outputs a
synthetic database. In real applications, a synthetic database output is appealing. Our mech-

anism achieves an accuracy of O(n−

K

2d+K /ǫ), and runs in polynomial time. We also generalize
the mechanism to preserve (ǫ, δ)-differential privacy with slightly improved accuracy. Extensive
experiments on benchmark datasets demonstrate that the mechanisms have good accuracy and
are efficient.

Keywords: Differential privacy, smooth queries, synthetic database.

1 Introduction

Machine learning is often conducted on datasets containing sensitive information, such as medical
records, commercial data, etc. The benefit of learning from such data is tremendous. But when
releasing sensitive data, one must take privacy into consideration, and has to tradeoff between the
accuracy and the amount of privacy loss of the individuals in the database.

In this paper we study differential privacy [11], which has become a standard concept of pri-
vacy. Differential privacy guarantees that almost nothing new can be learned from the database
that contains one specific individual’s information compared with that from the database without
that individual’s information. More concretely, a mechanism which releases information about the
database is said to preserve differential privacy, if the change of a single database element does
not affect the probability distribution of the output significantly. Therefore differential privacy
provides strong guarantees against attacks; the risk of any individual to submit her information
to the database is very small. Recently there have been extensive studies of machine learning
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[6, 21, 35, 5, 7, 9], statistical estimation [34, 25, 10], and data mining [23, 24, 22] under the differ-
ential privacy framework.

One of the most well studied problems in differential privacy is query answering. That is, how
to answer a set of queries differentially privately, accurately and efficiently. A simple and efficient
method is the Laplace mechanism [11]. Laplace mechanism adds Laplace noise to the true answers
of the queries, with the amount of noise proportional to the sensitivity of the query function. Thus
Laplace mechanism has good performances on queries of low sensitivity. A typical class of queries
that has low sensitivity is linear queries, whose sensitivity is O(1/n), where n is the size of the
database.

Although simple and efficient, Laplace mechanism has a limitation. It can answer at most O(n2)
queries with nontrivial privacy and accuracy guarantees. In real applications, there can be many
users and each user may submit a set of queries. Thus, limiting the number of total queries to be
no more than n2 is too restricted.

A remarkable result due to Blum, Ligett and Roth [4] shows that information theoretically it
is possible for a mechanism to answer far more than n2 linear queries while preserving differential
privacy and nontrivial accuracy simultaneously. Specifically, their mechanism (will be referred to
as BLR) can answer exponentially many linear queries and achieve good accuracy. There is a series
of works [12, 14, 27, 18, 17] improving the result of [4]. All these mechanisms are very powerful in
the sense that they can answer general and adversely chosen queries.

Among the mechanisms mentioned above, BLR is different to all the others in the output of the
algorithm. The output of BLR is a synthetic database, while the output of the other mechanisms
are answers to the queries. From a practical point of view, the synthetic database output is very
appealing. In fact, before the notion of differential privacy was proposed, almost all practical tech-
niques developed to preserve privacy against certain types of attacks output a synthetic database
by modifying the raw dataset (please see the survey [1] and the references therein).

However, outputting synthetic database while preserving differential privacy is much more diffi-
cult than outputting answers to the queries in terms of computational complexity. Comparing the
running time of BLR with the running time of the Private Multiplicative Weight updating (PMW)
mechanism [18] which is one of the best mechanisms outputting answers, BLR runs in time super-
polynomial in both the size of the data universe and the number of queries, while the running time
of PMW is linear in these two factors. Generally, if the data universe is {0, 1}d, there are strong
hardness results for differentially privately outputting synthetic database. In particular, it can
be shown that there is no differentially private algorithm which can output a synthetic database,
accurately answer general queries, and run in polynomial time1 [30].

Given the hardness result against general queries, recently there are growing interests in studying
efficient and differentially private mechanisms for a restricted class of queries. From a practical
point of view, if there exists a class of queries which is rich enough to contain most queries used in
applications and allows one to develop fast mechanisms, then the hardness result is not a serious
barrier for differential privacy.

Blum et al.[4] considers rectangle queries in the setting that the data universe is [−1, 1]d, where
d is a constant. A rectangle query is specified by an axis-aligned rectangle. The answer to the query
is the fraction of the data points that lie in the rectangle. They show that if [−1, 1]d is discretized to

1This hardness result assumes the existence of one-way functions.
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poly(n) bits of precision, then there is an efficient mechanism which outputs a synthetic database
and is accurate to the class of all rectangle queries.

Another class of queries that attracts a lot of attentions is the k-way conjunctions (or k-way
marginal). The data universe for this problem is {0, 1}d. Thus each individual record has d binary
attributes. A k-way conjunction query is specified by k features. The query asks what fraction of
the individual records in the database has all these k features being 1. A series of works attack this
problem using several different techniques [3, 15, 8, 19, 29, 13] . They propose elegant mechanisms
which run in time poly(n) when k is a constant even if the size of the data universe is exponentially
large. Thus these algorithms are more efficient than the best general-query-answering mechanisms
in the large data universe setting. However, the output of these mechanisms are not synthetic
databases2.

In this paper we study smooth queries defined also on data universe [−1, 1]d for a constant d. We
say a query isK-smooth if it is specified by a smooth function, which has bounded partial derivatives
up to the Kth order. The answer to the query is the average of the function values on data points
in the database. Smooth functions are widely used in machine learning and data analysis. There
are extensive studies on the relation between smoothness, regularization, reproducing kernels and
generalization ability [32, 28].

Our main result is an ǫ-differentially private mechanism for the class of all K-smooth queries.
The output of the mechanism is a synthetic database. The mechanism has (α, β)-accuracy, where

α = O(n− K
2d+K /ǫ) for β exponentially small. The running time of the mechanism is O(n

3dK+5d
4d+2K ),

polynomial in the size of the database. Note that if the order of smoothness K is large compared to
the dimension d, the error of the mechanism can be close to n−1. In contrast, if we employ BLR to

solve this problem and output a synthetic database, the accuracy guarantee is O(n− K
d+3K ), which is

at best n−1/3 for large K. To achieve this accuracy, the running time of BLR is super-exponential
in the size of the database (please see Section 3.3 for detailed analysis). We also generalize our
mechanism to preserve (ǫ, δ)-differential privacy with slightly improved accuracy.

Our work is related to [33], which proposes an efficient algorithm able to answer smooth queries
differentially privately. However, that mechanism outputs a (private) synopsis of the database. In
order to obtain the answer of a query, the user has to run an evaluation algorithm, which involves
complicated numerical integration procedures. In contrast, the mechanism given in this paper
simply outputs a synthetic database, which is friendly to the users in applications.

We conduct extensive experiments to evaluate the performance of the proposed mechanism on
benchmark datasets (which contain sensitive information such as medical records of individuals).
We also develop simple techniques to improve the efficiency of the algorithm. Experimental results
demonstrate that the algorithms achieve good accuracy and are practically efficient on datasets of
various sizes and numbers of attributes.

The rest of the paper is organized as follows. Section 2 briefly describes the background of
data privacy and gives the basic definitions. In Section 3 we propose the private mechanisms that
output synthetic database and accurately answer smooth queries. Section 3 also contains the main
theoretical results, analyzing the performances of the algorithms. All the experimental results are
given in Section 4. Finally, we conclude in Section 5. All proofs are given in the appendix.

2The hardness result in [30] has proved that for k-way marginal, efficiently outputting synthetic database is not
possible.
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2 Preliminaries

Let D be a database containing n data points in the data universe X . In this paper, we consider the
case that X ⊂ R

d where d is a constant. Typically, we assume that the data universe X = [−1, 1]d.
Two databases D and D′ are called neighbors if |D| = |D′| = n and they differ in exactly one data
point. The following is the formal definition of differential privacy.

Definition 2.1 ((ǫ, δ)-differential privacy). A sanitizer S which is a randomized algorithm that
maps an input database into some range R is said to preserve (ǫ, δ)-differential privacy, if for all
pairs of neighbor databases D,D′ and for any subset A ⊂ R, it holds that

P(S(D) ∈ A) ≤ P(S(D′) ∈ A) · eǫ + δ,

where the probability is taken over the random coins of S. If S preserves (ǫ, 0)-differential privacy,
we say S is ǫ-differentially private.

We consider linear queries. Each linear query qf is specified by a function f which maps the
data universe [−1, 1]d to R. qf is defined as qf(D) := 1

|D|
∑

x∈D f(x).

Let Q be a set of queries. The accuracy of a mechanism with respect to Q is defined as follows.

Definition 2.2 ((α, β)-accuracy). Let Q be a set of queries. A sanitizer S is said to have (α, β)-
accuracy for size n databases with respect to Q, if for every database D with |D| = n the following
holds

P(∃q ∈ Q, |S(D, q)− q(D)| ≥ α) ≤ β,

where S(D, q) is the answer to q given by S, and the probability is over the internal randomness
of the mechanism S.

(α, β)-accuracy is a strong notion of accuracy. It requires that with high probability all the
queries are accurately answered by the mechanism (i.e., it is a worst-case accuracy with respect to
queries). Some authors also consider a slightly weaker definition (α, β, γ)-accuracy [12].

Definition 2.3 ((α, β, γ)-accuracy). Let Q be a set of queries. A sanitizer S is said to have
(α, β, γ)-accuracy for size n databases with respect to Q, if for every database D with |D| = n the
following holds

P(S is (α, γ) − accurate for D) ≥ 1− β,

where the probability is over the internal randomness of the mechanism S; and (α, γ)-accurate
means that |S(D, q)− q(D)| ≤ α holds for at least 1− γ fraction q ∈ Q.

We will make use of the Laplace mechanism [11] in our algorithm. Laplace mechanism adds
Laplace noise to the output. We denote by Lap(σ) the random variable distributed according to
the Laplace distribution with parameter σ: P(Lap(σ) = x) = 1

2σ exp(−|x|/σ).
We will design a differentially private mechanism which outputs a synthetic database D̃. Each

element of D̃ is a data point in the data universe. |D̃| and |D| can be different, i.e., the synthetic
database and the original database may contain different numbers of data points. For any query
qf ∈ Q, the user simply calculates qf (D̃) := 1

|D̃|
∑

x∈D̃ f(x) as an approximation of qf (D). Our

differentially private mechanism guarantees accuracy with respect to the set of smooth queries.
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Next we formally define smooth queries. Since each query qf is specified by a function f , a set
of queries QF can be specified by a set of functions F . Remember that each f ∈ F maps [−1, 1]d to
R. For any point x = (x1, . . . , xd) ∈ [−1, 1]d, if k = (k1, . . . , kd) is a d-tuple of nonnegative integers,
then we define

Dk := Dk1
1 · · ·Dkd

d :=
∂k1

∂xk11
· · · ∂

kd

∂xkdd
.

Let |k| := k1 + . . .+ kd. Define the K-norm as

‖f‖K := sup
|k|≤K

sup
x∈[−1,1]d

|Dkf(x)|.

We will study the set CK
B which contains all smooth functions whose derivatives up to order K

have ∞-norm upper bounded by a constant B > 0. Formally, CK
B := {f : ‖f‖K ≤ B}. The set

of queries specified by CK
B , denoted as QCK

B
, is our focus. Smooth functions have been studied in

depth in machine learning [31, 32, 28].

Many functions widely used in machine learning are smooth functions. An example is the

Gaussian kernel function f(x) = exp
(

−‖x−x0‖2
2σ2

)

, where x0 ∈ R
d is a constant vector. Linear

combination of Gaussian kernels is one of the most popular functions used in machine learning

f(x) =
J
∑

j=1

αj exp

(

−‖x− xj‖2
2σ2

)

,

where xj , j = 1, 2, . . . , J , are constant vectors.

The smoothness of this type of functions is characterized in the following proposition.

Proposition 2.1. Let

f(x) =

J
∑

j=1

αj exp

(

−‖x− xj‖2
2σ2

)

,

where x ∈ R
d. Let α = (α1, . . . , αJ). Suppose ‖α‖1 ≤ 1. Then for every K ≤ σ2,

‖f‖K ≤ 1.

The proof is given in the appendix Section A.3.

3 Theoretical Results

This section contains the main theoretical results of the paper. In Section 3.1 we give an ǫ-
differentially private mechanism which outputs a synthetic database and guarantee good accuracy
for smooth queries. Section 3.2 generalizes the mechanism to preserve (ǫ, δ)-differential privacy
with slightly improved accuracy. In Section 3.3 we compare the performance of our algorithms to
well known differentially private mechanisms on this problem.
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3.1 The ǫ-differentially Private Mechanism

The following theorem is our main result. It says that if the query class is specified by smooth
functions, then there is a polynomial time mechanism which preserves ǫ-differential privacy and
good accuracy. The output of the mechanism is a synthetic dataset. A formal description of the
mechanism is given in Algorithm 1.

Theorem 3.1. Let the query set be

QCK
B

:= {qf (D) =
1

n

∑

x∈D
f(x) : f ∈ CK

B },

where K ∈ N and B > 0 are constants. Let the data universe be [−1, 1]d, where d is a constant.
Then the mechanism described in Algorithm 1 satisfies that for any ǫ > 0, the following hold:

1) The mechanism preserves ǫ-differential privacy.

2) There is an absolute constant c such that for every β ≥ c · e−n
1

2d+K
the mechanism is (α, β)-

accurate, where α = O(n− K
2d+K /ǫ), and the hidden constant depends only on d, K and B.

3) The running time of the mechanism is O(n
3dK+5d
4d+2K ). (This is dominated by solving the linear

programming problem in step 20 of the algorithm.)

4) The size of the output synthetic database is O(n1+ K+1

2d+K ).

The proof of Theorem 3.1 is given in the appendix Section A.1.

Before explaining the ideas of the algorithm, let us first take a closer look at the results in
Theorem 3.1. To have a better view of how the performances depend on the order of smoothness,
let us consider three cases. The first case is K = 1, i.e., the query functions only have the first order
derivatives. Another extreme case is K/d = M ≫ 1, i.e., very smooth queries. We also consider a
case in the middle by assuming K = 2d. Table 1 gives simplified upper bounds for the error, the
running time of the algorithm, and the size of the output synthetic database in these cases.

From Table 1 we can see that the accuracy α improves dramatically from roughly O(n− 1

2d ) to
nearly O(n−1) as K increases. For K > 2d, the error is smaller than the sampling error O( 1√

n
).

On the other hand, the running time of the mechanism increases if one wants better accuracy for
highly smooth queries. (Please see Section 4 for how to improve the efficiency of the algorithm in
practice.) Finally, the size of the output synthetic database also increases in order to have better
accuracy: roughly, O(n−1) accuracy requires an O(n2)-size synthetic database.

Now we explain the mechanism in detail. The first idea is that all smooth functions in CK
B can

be approximated by linear combinations of a small set of basis functions. In fact, approximation
of smooth functions by polynomials, radial basis function, wavelets etc. has been well studied
for decades. However, for the differential privacy problem, our requirement of the approximation
is quite different to the typical results in approximation theory. Specifically, we require that all
smooth functions in CK

B can be approximated by linear combinations of a set of basis functions with
small coefficients. The coefficients correspond to all smooth functions must be uniformly bounded
by a constant. (The reason will soon be clear.) It is not clear from standard approximation theory
whether any of the above mentioned basis function sets satisfies such a requirement. Instead, we
make a change of variables θi = arccos(xi) and consider approximation of the transformed function

6



Algorithm 1 Private Synthetic DB for Smooth Queries

Notations: T d
t := {0, 1, . . . , t− 1}d, ak := 2k+1−N

N , A := {ak|k = 0, 1, . . . , N − 1},
L := { i

L |i = −L,−L+ 1, . . . , L− 1, L}, x := (x1, · · · , xd), θi(x) := arccos(xi).
Parameters: Privacy parameters ǫ, δ > 0, Failure probability β > 0, Smoothness order K ∈ N.
Input: Database D ∈

(

[−1, 1]d
)n

Output: Synthetic database D̃ ∈
(

[−1, 1]d
)m

1: Set t = ⌈n 1

2d+K ⌉, N = ⌈n K
2d+K ⌉, m = ⌈n1+ K+1

2d+K ⌉, L = ⌈n
d+K
2d+K ⌉.

2: Initialize: D′ ← ∅, D̃ ← ∅, u← 0Nd

3: for all z = (z1, . . . , zd) ∈ D do
4: xi ← argmina∈A |zi − a|, i = 1, . . . , d
5: Add x = (x1, . . . , xd) to D′

6: end for
7: for all r = (r1, . . . , rd) ∈ T d

t do
8: br ← 1

n

∑

x∈D′ cos (r1θ1(x)) . . . cos (rdθd(x))

9: b̂r ← br + Lap
(

td

nǫ

)

10: b̂′r ← argminl∈L |b̂r − l|
11: end for
12: for all k = (k1, . . . , kd) ∈ T d

N do
13: for all r = (r1, . . . , rd) ∈ T d

t do
14: Wrk ← cos (r1 arccos(ak1)) . . . cos (rd arccos(akd))
15: W ′

rk ← argminl∈L |Wrk − l|
16: end for
17: end for
18: b̂′ ← (b̂′r)‖r‖∞≤t−1 (b̂′ is a td dimensional vector)

19: W ′ ← (W ′
rk)‖r‖∞≤t−1,‖k‖∞≤N−1 (a td ×Nd matrix)

20: Solve the following LP problem: minu ‖W ′u− b̂′‖1, subject to u � 0, ‖u‖1 = 1.
Obtain the optimal solution u∗.

21: repeat
22: Sample y according to distribution u∗

23: Add y to D̃
24: until |D̃| = m
25: return: D̃

gf (θ1, . . . , θd) = f(cos θ1, . . . , cos θd) by linear combinations of trigonometric polynomials. It can
be shown that the trigonometric polynomial basis satisfies the small coefficient requirement. It is
worth pointing out that here we consider L∞ approximation, different to the L2 approximation
which is simply the Fourier analysis when using trigonometric basis.

Next we view the trigonometric polynomial functions as a set of basis queries. We compute the
answers of the basis queries (step 8 in Algorithm 1), and add Laplace noise to the answers (step
9). These noisy answers guarantee differential privacy. Note that if, for a smooth query, we know
the coefficients of the linear combination of basis functions that approximate the smooth function,
then we can easily obtain a differentially private answer to the smooth query by simply combining
the noisy answers of the basis queries with these coefficients. Moreover, because all the coefficients

7



Table 1: Performance vs. Order of smoothness

Order of Accuracy Running Size of

smoothness α time synthetic DB

K = 1 O(n−

1
2d+1 ) O(n2) O(n1+ 2

2d+1 )

K = 2d O(n−

1
2 ) O(n

3
4
d+ 5

8 ) O(n
3
2
+ 1

4d )

K

d
= M ≫ 1 O(n−(1− 2

M
)) O(nd( 3

2
−

1
2M

)) O(n2− 1
2M )

are small, the error of the answer to the smooth query is small. However, an important advantage
of our mechanism is that we do not even need to know the linear coefficients. We merely need to
know that there exist such coefficients which leads to a good approximation of a smooth function.

Finally, our goal is to generate a synthetic dataset (without using any information of the original
database) so that if we evaluate all the basis queries on this synthetic database, all the answers will
be close to the noisy answers obtained from the original dataset. The key observation is that if we
have such a synthetic dataset, then the evaluation of any smooth query on this synthetic dataset
is an answer both differentially private and accurate. To generate such a dataset, we first learn a
probability distribution over [−1, 1]d so that the answers of the basis queries with respect to this
distribution is close to the noisy answers. Observe that such a distribution must exist, because
the uniform distribution over the original dataset satisfies this requirement. However, learning a
continuous distribution is computationally intractable. So we discretize the domain (as well as the
original data (step 4)) and consider distributions over the discretized data universe. Because the
queries are smooth, the error involved by discretization can be controlled. Learning the distribution
can be formulated as a linear programming problem (step 20). Note that in the LP problem we
minimize l1 error instead of l∞ error because it results in slightly better accuracy. Finally, we
randomly draw sufficiently large number of data from this probability distribution, and these data
form the output synthetic database.

The running time of the mechanism is dominated by the linear programming step. It is known
that the worst-case time complexity of the interior point method is upper bounded in terms of the
number of variables, number of constraints, and the number of bits to encode the problem. It is
easy to see that there are only poly(n) variables and constraints. To control the number of bits,
we round each number in the linear programming problem in a certain precision level (step 10 and
15). Because all the numbers after rounding are bounded uniformly by a constant, the number of
bits is not too large.

3.2 Generalization to (ǫ, δ)-differential Privacy

It’s easy to generalize the previous ǫ-differentially private mechanism to an (ǫ, δ)-differentially
private mechanism which could achieve slightly better accuracy.

The (ǫ, δ)-differential private mechanism is different to Algorithm 1 only in step 1 and step 9.
These two steps are replaced by the following:

8



1) Step 1. Set t = ⌈n 2

3d+2K (log 1
δ )

− 1

3d+2K ⌉, N = ⌈n 2K
3d+2K (log 1

δ )
− K

3d+2K ⌉ ,
m = ⌈n

4d+4K+2

3d+2K (log 1
δ )

− 2d+2K+1

3d+2K ⌉, and L = ⌈n
2d+2K
3d+2K (log 1

δ )
− d+K

3d+2K ⌉ .

2) Step 9. b̂r = br + Lap

(

(td log 1

δ
)
1
2

nǫ

)

.

We have the following theorem for this mechanism.

Theorem 3.2. Let the query set QCK
B

be defined as in Theorem 3.1. Let the data universe be

[−1, 1]d, where d ∈ N is a constant. Then the mechanism described above satisfies that for any
ǫ > 0, δ > 0, the following hold:

1) The mechanism is (ǫ, δ)-differentially private.

2) There is an absolute constant c such that for any β ≥ c · e−n
2

3d+2k (log 1

δ
)
−

1
3d+2K

the mechanism

is (α, β)-accurate, where α = O
(

n− 2K
3d+2K (log 1

δ )
K

3d+2K /ǫ
)

, and the hidden constant depends only on

d, K and B.

3) The running time of the mechanism is O
(

n
3dK+5d
3d+2K (log 1

δ )
− 3dK+5d

6d+4K

)

.

4) The size of synthetic database is O
(

n
4d+4K+2

3d+2K (log 1
δ )

− 2d+2K+1

3d+2K

)

.

The proof of Theorem 3.2 is by the standard use of the composition theorem [14]. We omit the
details.

Note that the running time and the size of the output synthetic database of this (ǫ, δ)-differentially
private mechanism are similar to that of the ǫ-differentially private one.

3.3 Comparison to Existing Algorithms

Here we study the performance of existing differentially private mechanism which can output a
synthetic database for accurately answering smooth queries. In particular, we analyze a simple
variant of the BLR mechanism.

Note that the original BLR mechanism applies to the setting where the data universe is {0, 1}d
and the query set contains a finite number of linear queries. Given the query set, BLR outputs a
synthetic database and preserves ǫ-differential privacy. Let |Q| be the number of queries in the query

set Q, and let |X | be the size of the data universe, the accuracy of BLR is Õ

(

(

log |Q| log |X |
n

)1/3
)

[4]. (In this subsection we ignore the dependence on all other factors for clarity.)

For the smooth query problem, the data universe is the continuous domain [−1, 1]d, and the
query set contains infinitely many elements as the number of smooth functions is infinite. In order
to apply BLR to this problem, one must discretize both the data universe and the range of the
smooth functions. It is easy to see that to achieve an accuracy of α for all smooth queries, it is
necessary and sufficient to discretize the data universe [−1, 1]d to Ω( 1α) grids along each dimension,
and discretize the range to Ω( 1α) precision.

After these discretization, the data universe X is of size Ω(( 1α )
d), and the query set Q contains

only a finite number of queries. The following proposition gives the performance of BLR for the
discretized smooth queries.

9



Proposition 3.3. The accuracy guarantee of the BLR mechanism (implemented as described above)

on the set of K-smooth queries is O
(

n− K
d+3K

)

. The running time for achieving such an accuracy

is super-exponential in n.

The proof of Proposition 3.3 is given in the appendix Section A.2.

Note that even for highly smooth queries, the accuracy guarantee of BLR is at best O
(

n−1/3
)

.
In contrast, our mechanism has an accuracy close to n−1 if K is large compared to d. More
importantly, our mechanism runs in polynomial time, much more efficient than BLR on the smooth
problem.

3.4 Practical Acceleration via Private PCA

Theoretically, the worst-case time complexity of our ǫ-differentially private mechanism can be nearly

n
3d
2 to achieve n−1 accuracy for highly smooth queries. In real application such a running time

is unacceptable. We thus consider a simple variant of Algorithm 1 which turns out to be very
efficient in our experiments and suffers only from minor loss in accuracy. Note that the running
time of Algorithm 1 is dominated by the linear programming step. This LP problem has O(Nd)
variables and O(td) constraints, where Nd is the number of discretized grids in [−1, 1]d and td is the
number of trigonometric polynomial basis functions. To make our algorithm practical, we consider
a subset M of the Nd grids with size C := |M| ≪ Nd and restrict the probability distribution
u on this subset of grids. Similarly, we use a subset of size R of the td trigonometric polynomial
basis functions preferred to lower degrees. By doing this, the LP problem has C variables and R
constraints.

The simplest approach to obtainM is sampling from Nd grids in [−1, 1]d uniformly. However,
this approach suffers from substantial loss in accuracy (see Appendix for experimental results of
this method), because |M| is extremely small compared to Nd, the probability that M contains
data points in D (or close to D) is very small. In order to reduce the size of the LP problem and
preserve the accuracy, we need a better approach to obtainM. Formally, the problem of choosing
a subsetM for our purpose can be formulated as follows: We want a subsetM so that

1)M is differentially private;

2) |M| is small;

3) For almost every data point x in D, there is a point inM close to x.

Note that without the privacy concern, one can simply letM = D. But under the requirement of
privacy, this problem is highly non-trivial. Here we adopt private PCA to obtain a low dimensional
ellipsoid. The ellipsoid is spanned by the (private) top eigenvectors of the data covariance matrix
with the square root of the (private) eigenvalues as the radius. In particular, we use a slightly
modified version of the Private Subspace Iteration (PSI) mechanism due to Hardt [16] to compute
the private eigenpairs. The mechanism is described in Algorithm 2. Finally, we uniformly sample
C points from the ellipsoid to formM.

In the following three results, we show that the PSI mechanism is differentially private and
accurate for the top eigenvectors and eigenvalues respectively. Note that Hardt[16] shows that the
tangent of the angle between the space spanned by the top-k leading eigenvectors of the true data
covariance matrix and the the space spanned by the output columns vectors is small with high
probability. However, it does not suffice to conclude that the output private ellipsoid converge
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Algorithm 2 Private Subspace Iteration

Input: Database D ∈ ([−1, 1]d)n
Output: Top-k private eigenvectors and eigenvalues of X(L).
Parameters: Number of iterations L ∈ N, dimension k, privacy parameters ǫ, δ > 0, Denote GS

as the Gram-Schmidt orthonormalization algorithm.

1: Set σ =
5d
√

4kL log(1/δ)

nǫ , A = 1
nDDT − D̄T D̄, where D̄ is the mean of D.

2: Initialize: G(0) ∼ N(0, 1)d×k , X(0) ← GS(G0)
3: for all l = 1, 2, . . . , L do
4: Sample G(l) ∼ N(0, σ2)n×k.
5: W(l) = AX(l−1) + ||X(l−1)||∞G(l)

6: X(l) ← GS(W(l))
7: end for

to the true PCA ellipsoid. Our results slightly strengthen the result in [16]. We show that the
column-wise convergence between eigenvectors and output columns, which can be concluded from
the simultaneous convergence between the increasing sequence of eigenspaces and the increasing
sequence of output-spaces.

Theorem 3.4 (Accuracy of the eigenvectors). Given a database D with |D| = n, let A =
1
nDDT − D̄T D̄ with eigenvalues λ1 ≥ · · · ≥ λd and γk = λk/λk+1 − 1 for some k ≤ d/2. Let
U = (u1, . . . ,uk) ∈ R

d×k be a basis for the space spanned by the top k eigenvectors. The matrix

X(L) = (x
(L)
1 , . . . ,x

(L)
k ) ∈ R

d×k returned by Algorithm 2 on input of D, with parameters k, L ≥
C(mins≤k γs)

−1 log d for sufficiently large constant C,L ∈ N, and privacy parameter σ satisfies with
probability 1− o(1),

sin θ(us,x
(L)
s ) ≤ O

(

σωs

√

dmax ||X(l)||2∞ logL

)

,

where

ωs =

{

max{ 1
γsλs

, 1
γs−1λs−1

} 2 ≤ s ≤ k,
1

γ1λ1
s = 1.

Corollary 3.5 (Accuracy of the eigenvalues). Given the assumption in Theorem 3.4, let λ̂s =
√

xT
s A

2xs, with probability 1− o(1), we have

|λ̂s − λs| ≤ O(
σ2dmax ||Xl||2∞ logL

γ2sλ
2
s

).

Theorem 3.6 (Privacy). If Algorithm 2 is executed with each G(l) independently sampled as

G(l) ∼ N(0, σ2)d×k with σ =
5d
√

4kL log(1/δ)

nǫ , then Algorithm 2 satisfies (ǫ, δ)-differential privacy.

If Algorithm 2 is executed with each G(l) independently sampled as G(l) ∼ Lap(σ)d×k with

σ = 50d3/2kL
nǫ , then Algorithm 2 satisfies ǫ-differential privacy.

The proof of Theorem 3.4, 3.6, and Proposition 3.5 are given in the appendix Section A.4.
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4 Experiments

We evaluate our mechanisms on five datasets all from the UCI repository: 1) CRM: Communities
and Crime dataset that combines socio-economic data, law enforcement data, and crime data. 2)
CTG: A Cardiotocography dataset consisting of measurements of fetal heart rate and uterine con-
traction features on cardiotocograms. 3) PAM: A Physical Activity Monitoring dataset consisting
of inertial measurements and heart rate data. 4) PKS: consisting of a series of biomedical voice
measurements of a group of people, some of which are with Parkinson disease. 5) WDBC: Breast
Cancer Wisconsin Diagnostic dataset consists of characteristics of the cell nuclei.

Table 2: Summary of the dataset

Dataset Size (n) # Attributes (d)

CRM 1993 100
CTG 2126 20
PAM 20000 40
PKS 5875 20

WDBC 569 30

A summary of the size and the number of attributes3 of these datasets is given in Table 2. Since
the data universe considered in this paper is [−1, 1]d, we normalize each attribute to [−1, 1].

We conduct two groups of experiments. In one group we use the mechanism which guarantees
ǫ-differential privacy, and in the other we use the algorithm which guarantees (ǫ, δ)-differential
privacy. In both groups of experiments, we set ǫ = 1. We set δ = 10−10 in experiments with
(ǫ, δ)-differential privacy.

The queries employed in the experiments are linear combinations of Gaussian kernel functions.
We use this type of functions because 1) These functions possess good smoothness property as
stated in Section 2, and 2) linear combinations of Gaussian are universal approximators.

Detailed parameter setting of the query functions is as follows. We consider

f(x) =

J
∑

j=1

αj exp

(

−‖x− xj‖2
2σ2

)

.

In all experiments, we set J = 10; αj is randomly chosen from [0, 1], and xj is randomly chosen
from [−1, 1]d. We test various values of σ to see how the smoothness of the query function affects
the performance of the algorithm (see below for detailed results).

We use different performance measures to evaluate the algorithm. The goal is to have a compre-
hensive understanding of the performance of the mechanism. We consider the worst-case error of
the mechanism over the set of queries. Because our query set, i.e., linear combination of Gaussian
Kernels, contains infinitely many functions, we randomly choose 10000 queries in each experiment.
The worst-case error is over these 10000 queries.

We give both absolute error and relative error for all experiments. Absolute error of a query

qf is defined as |qf (D)− qf (D̃)|; and relative error is defined as | qf (D)−qf (D̃)
qf (D) |. We present relative

3Because we study smooth queries defined on Euclidean space, we only use the continuous attributes.
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Table 3: Worst-case error of ǫ-differential privacy (C = 104)

Dataset Error
σ

Time(s)
2 4 6 8 10

CRM
Abs 0.001 0.035 0.033 0.022 0.020

1.1
Rel 1.084 0.256 0.083 0.037 0.027

CTG
Abs 0.046 0.041 0.027 0.014 0.005

1.1
Rel 0.209 0.063 0.033 0.015 0.006

PAM
Abs 0.007 0.006 0.004 0.001 0.004

1.2
Rel 0.058 0.011 0.006 0.001 0.004

PKS
Abs 0.006 0.007 0.001 0.007 0.004

0.9
Rel 0.059 0.013 0.002 0.008 0.004

WDBC
Abs 0.037 0.059 0.039 0.011 0.012

1.0
Rel 0.329 0.110 0.053 0.013 0.014

error because in certain cases (e.g. when σ is small) f(x) is very small for most x ∈ D. Therefore
in this case a small absolute error does not necessarily imply good performance, and relative error
is more informative4.

We present the running time of the mechanism for outputting the synthetic database in each
experiment. The computer used in all the experiments is a workstation with 2 Intel Xeon X5650
processors of 2.67GHz and 32GB RAM. We use the CPLEX package for solving the linear pro-
gramming problem in our algorithms.

We present the performance of the ǫ-differentially private algorithm in Table 3. For each dataset,
both absolute error and relative error, as average of 20 rounds, are reported sequentially. We make
use of linear combination of Gaussian with different values of σ as the query functions. The last
column of the table lists the running time with respect to the worst σ of the algorithm for outputting
the synthetic database.

Now we analyze the experimental results in Table 3 in greater detail. In this set of experiments
we set C = 104. First, the algorithm is quite efficient. On all datasets the mechanism outputs the
synthetic database in less than ten seconds. Next considering the accuracy. As explained earlier,
the relative error is more meaningful in our experiments. It can be seen that except for the case
σ = 2 (recall that in Proposition 2.1, we show f ∈ CK

1 for K ≤ σ2), the accuracy is reasonably
good. The relative errors decrease monotonically as the the order of smoothness of the queries
increases.

In Table 4, we present the results for the (ǫ, δ)-differentially private mechanism. Comparing to
Table 3, the performances of the two algorithms are similar for δ = 10−10.

5 Conclusion

Outputting a synthetic database while preserving differential privacy is very appealing from a prac-
tical viewpoint. In this paper, we propose differentially private mechanisms which output synthetic

4We point out that one also needs to be careful when using relative error. In our experiments, we deliberately set
αj ∈ [0, 1]. So f(x) ≥ 0 for all x. If instead we set αj ∈ [−1, 1], then f(x) can be either positive or negative, and it
is possible that qf (D) is close to zero while f(x) is not small for most x ∈ D. In such a case, a large relative error
does not necessarily imply a bad performance.
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Table 4: Worst-case error of (ǫ, δ)-differential privacy (C = 104)

Dataset Error
σ

Time(s)
2 4 6 8 10

CRM
Abs 0.001 0.018 0.034 0.020 0.020

7.5
Rel 0.631 0.126 0.083 0.034 0.028

CTG
Abs 0.042 0.030 0.023 0.014 0.008

1.1
Rel 0.192 0.045 0.028 0.016 0.008

PAM
Abs 0.012 0.020 0.006 0.003 0.001

6.9
Rel 0.089 0.033 0.007 0.003 0.002

PKS
Abs 0.015 0.002 0.003 0.001 0.006

1.4
Rel 0.109 0.003 0.003 0.001 0.007

WDBC
Abs 0.045 0.032 0.019 0.018 0.011

1.2
Rel 0.388 0.061 0.026 0.021 0.013

database. The user can obtain accurate answers to all smooth queries from the synthetic database.
The mechanisms run in polynomial time, while existing algorithms run in super-exponential time.
For queries of high order smoothness, the mechanisms achieve an accuracy nearly O(n−1), much
better than the sampling error O(n−1/2) which is inherent to differentially private mechanisms
answering general queries.

There are a few future directions we think worth exploring.

Smooth and non-smooth queries: As mentioned in Introduction, there exists an efficient
and differentially private algorithm which outputs a synthetic database and is accurate to the
class of rectangle queries defined on [−1, 1]d [4]. Note that rectangle queries are not smooth. These
queries are specified by indicator functions which are not even continuous. The mechanism proposed
in [4] is completely different to the mechanism for smooth queries given in this paper. Thus an
immediate question is: can we develop efficient mechanisms which output synthetic database and
preserve differential privacy for a natural class of queries containing both smooth and important
non-smooth functions.

A Proofs of the theorems and auxiliary experiment results

In this appendix, we will give the proof of the main theorem in Section A.1; the analysis of BLR
on the Smooth Query in Section A.2; the analysis of smoothness of linear combination of Guassian
kernel functions in Section A.3; proofs of privately estimation on eigenvectors and eigenvalues in
Section A.4; and the auxiliary experiment results by a simple approach to get subset in Section
A.5.

A.1 Proof of the Main Theorem

In this section we prove Theorem 3.1.

Proof of Theorem 3.1. We first define some notations repeatedly used in the proof. Let the
input database be

D = (z(1), z(2), · · · , z(n)).

14



Let the discretized dataset be (please see step 5 in Algorithm 1)

D′ = (x(1),x(2), · · · ,x(n)).

Also let the output synthetic dataset be

D̃ = (y(1),y(2), · · · ,y(m)).

Let b = (br)‖r‖∞≤t−1 be a td dimensional vector, where br is defined in step 8 of the algorithm.

Similarly, Let b̂ = (b̂r)‖r‖∞≤t−1 and let W = (Wrk)‖r‖∞≤t−1,‖k‖∞≤N−1, where b̂r and Wrk are

defined as in step 9 and 14 of the algorithm respectively. Let ∆ = b̂ − b be the td dimensional
Laplace noise, where b̂ is defined in step 16 of the algorithm. Finally let b̃ = (b̃r)‖r‖∞≤t−1, where

b̃r =
1

m

∑

y∈D̃

cos (r1θ1(y)) . . . cos (rdθd(y)) .

(Recall that θi(y) = arccos(yi). Please see also the Notations in Algorithm 1.)

Now we prove the four results in the theorem one by one.

A.1.1 Differential Privacy

That the mechanism preserves ǫ-differential privacy is straightforward. Note that the output syn-
thetic database D̃ contains no private information other than that obtained from b̂. So we only
need to show that b̂ is differentially private. But this is immediate from the privacy of Laplace
mechanism.

A.1.2 Accuracy

Let θ = (θ1, . . . , θd). For any f(x) ∈ CK
B , where x ∈ [−1, 1]d, let

gf (θ) := f(cos θ1, . . . , cos θd).

Denote c = (cr1,...,rd)‖r‖|∞≤t−1 as a td-dimensional vector, and:

htf (c,θ) :=
∑

0≤r1,...,rd≤t−1

cr1,...,rd cos(r1θ1) . . . cos(rdθd),

For a constant M (we will specify how to choose the value of M later), let:

c∗ := arg inf
‖c‖∞≤M

sup
θ∈[−π,π]d

∣

∣htf (c,θ)− gf (θ)
∣

∣

hM,t
f (θ) :=

∑

0≤r1,...,rd≤t−1

c∗r1,...,rd cos(r1θ1) . . . cos(rdθd).

Thus, hM,t
f is the best tth order small coefficient approximation of gf .
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Moreover, for any x = (x1, . . . , xd) ∈ [−1, 1]d, also let

θ(x) := (arccos x1, . . . , arccos xd).

Now we decompose the error of the mechanism into several terms:

∣

∣

∣qf (D̃)− qf (D)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

1

m

∑

y∈D̃

f(y)− 1

n

∑

z∈D
f(z)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

m

∑

y∈D̃

f(y)− 1

m

∑

y∈D̃

hM,t
f (θ(y))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

m

∑

y∈D̃

hM,t
f (θ(y)) − 1

n

∑

x∈D′

hM,t
f (θ(x))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

∑

x∈D′

hM,t
f (θ(x)) − 1

n

∑

x∈D′

f(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

∑

x∈D′

f(x)− 1

n

∑

z∈D
f(z)

∣

∣

∣

∣

∣

. (1)

We further decompose the second term in the last row of the above inequality. We have

∣

∣

∣

∣

∣

∣

1

m

∑

y∈D̃

hM,t
f (θ(y)) − 1

n

∑

x∈D′

hM,t
f (θ(x))

∣

∣

∣

∣

∣

∣

=
∣

∣

∣
c∗ · (b̃− b)

∣

∣

∣
≤
(

‖b̃− b̂‖1 + ‖∆‖1
)

‖c∗‖∞

≤
(

‖b̃−Wu∗‖1 + ‖Wu∗ −W ′u∗‖1 + ‖W ′u∗ − b̂′‖1 + ‖b̂′ − b̂‖1 + ‖∆‖1
)

‖c∗‖∞

≤
(

‖b̃−Wu∗‖1 + ‖(W −W ′)u∗‖1 + ‖Wu′ − b̂‖1 + ‖(W −W ′)u′‖1 + 2‖b̂′ − b̂‖1 + ‖∆‖1
)

‖c∗‖∞

≤
(

‖b̃−Wu∗‖1 +
4td

L
+ 4‖∆‖1

)

‖c∗‖∞, (2)

where u′ is the uniform distribution on D′. Note that the second last inequality holds because

‖W ′u∗ − b̂′‖1 ≤ ‖W ′u′ − b̂′‖1.

Also, the last inequality in (2) follows from

‖b̂′ − b̂‖1 ≤
td

L
+ ‖∆‖1,

and
‖Wu′ − b̂‖1 ≤ ‖Wu′ − b‖1 + ‖∆‖1 = ‖∆‖1,

where the last equality holds since Wu′ = b.
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Define

ηd =

∣

∣

∣

∣

∣

1

n

∑

x∈D′

f(x)− 1

n

∑

z∈D
f(z)

∣

∣

∣

∣

∣

,

ηn = 4‖∆‖1‖c∗‖∞,

ηa =

∣

∣

∣

∣

∣

∣

1

m

∑

y∈D̃

f(y)− 1

m

∑

y∈D̃

hM,t
f (θ(y))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

∑

x∈D′

hM,t
f (θ(x))− 1

n

∑

x∈D′

f(x)

∣

∣

∣

∣

∣

,

ηs = ‖b̃−Wu∗‖1‖c∗‖∞,

ηr =
4td

L
‖c∗‖∞,

where ηd, ηn, ηa, ηs, ηr correspond to the discretization error, noise error, approximation error,
sampling error and rounding error, respectively. Combining (1), (2) and the equations above, we
have the error of the mechanism bounded by the sum of these five types of errors:

∣

∣

∣qf (D̃)− qf (D)
∣

∣

∣ ≤ ηd + ηn + ηa + ηs + ηr.

We now bound the five errors separately.

Discretization error ηd: Since f ∈ CK
B (K ≥ 1), the first order derivatives of f are all bounded

by B. Also the discretization precision of [−1, 1]d is 1
N , so the distance between the data in D and

the corresponding data in D′ is O( 1
N ). Thus we have

ηd =

∣

∣

∣

∣

∣

1

n

∑

x∈D′

f(x)− 1

n

∑

z∈D
f(z)

∣

∣

∣

∣

∣

≤ dB

N
= O

(

n− K
2d+K

)

.

Noise error ηn: Let M be a constant depending on d, K, B and sufficiently large5. Since M is
a constant, ‖c∗‖∞ = O(1). Thus to bound ηn = ‖∆‖1 · ‖c∗‖∞, we only need to bound the l1 norm

of the td-dimensional vector ∆ which contains i.i.d. random variables Lap
(

td

nǫ

)

; or equivalently

bound the sum of td i.i.d. random variables with exponential distribution. It is well known that
such a sum satisfies gamma distribution. Simple calculations yields

P

(

‖∆‖1 ≤ 2
t2d

nǫ

)

≥ 1− 10e−
td

5 .

Thus, with probability 1− 10e−
td

5 , we have ηn = ‖∆‖1‖c∗‖∞ ≤ O
(

t2d

nǫ

)

.

Approximation error ηa: Recall that for any x,

gf (θ(x)) = f(x).

5M = 2KB(π(K + 1))d suffices for this and all later requirements on M .
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We have

ηa =

∣

∣

∣

∣

∣

∣

1

m

∑

y∈D̃

f(y)− 1

m

∑

y∈D̃

hM,t
f (θ(y))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

∑

x∈D′

hM,t
f (θ(x)) − 1

n

∑

x∈D′

f(x)

∣

∣

∣

∣

∣

≤ 2
∥

∥gf − hM,t
f

∥

∥

[−π,π]d
.

To bound ηa, we need the following result.

Theorem A.1 ([33]). For any K, d,B, there is M such that for every f ∈ CK
B

‖gf − hM,t
f ‖[−π,π]d ≤ O

(

1

tK+1

)

.

According to this theorem, we have ηp ≤ O
(

1
tK+1

)

.

Sampling error ηs: It is easy to bound sampling error. Let Wr be the row vector of matrix W
indexed by r. Recall that −1 ≤Wrk ≤ 1. Thus for each r, by Chernoff bound we have that for any
τ > 0:

P

(

|b̃r −Wru
∗| ≥ τ

)

≤ 2e−
mτ2

2 ,

since b̃r is just the average of m i.i.d. samples and Wu∗ is its expectation. Next by union bound

P

(

‖b̃−Wu∗‖∞ ≥ τ
)

≤ 2tde−
mτ2

2 ,

and therefore

P

(

‖b̃−Wu∗‖1 ≥ tdτ
)

≤ 2tde−
mτ2

2 .

Setting τ such that 2tde−
mτ2

2 = e−t, we have that with probability 1− e−t,

‖b̃−Wu∗‖1 ≤ O

(

td+1/2

√
m

)

.

Rounding error ηr: Since ‖c∗‖∞ is upper bounded by a constant, we have

ηr ≤ O

(

td

L

)

.

Putting it together: Combining the five types of errors, we have that with probability 1−e−t−
10e−

td

5 , the error of the mechanism satisfies
∣

∣

∣

∣

1

m

∑

y∈D̃

f(y)− 1

n

∑

z∈D
f(z)

∣

∣

∣

∣

≤ O

(

1

N
+

1

tK+1
+

t2d

nǫ
+

td+
1

2√
m

+
td

L

)

. (3)

Recall that the mechanism sets

t = ⌈n 1

2d+K ⌉, N = ⌈n K
2d+K ⌉, m = ⌈n1+ K+1

2d+K ⌉, L = ⌈n
d+K
2d+K ⌉.

The theorem follows after some simple calculation.
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A.1.3 Running time

It is not difficult to see that in this case the running time of the mechanism is dominated by solving
the Linear Programming problem in step 20. (Because the time complexity of linear programming
is with respect to arithmetic operations, all running time discussed here should be understand in
this way.) To analyze the running time of the LP problem, observe that it could be rewritten in
following standard form:

max
x

c̄T x̄ (4)

s.t. Āx̄ = b̄

x̄ � 0

where

Ā =

(

L ·W ′ L · Itd −L · Itd
1T
Nd 0 0

)

,

b̄ =

(

L · b̂′

1

)

, c̄ =





0
1td
1td



 , x̄ =





u
v
w



 .

Ā is a m̄× n̄ matrix where m̄ = td +1 and n̄ = Nd +2td. Note that 1) each element of W ′ is in
[−1, 1]; 2) each element of b̂′ is in [−1, 1]; and 3) each element of W ′ and b̂′ is rounded to precision
1/L. So actually we have reduce to a LP problem (4), with elements of Ā, b̄, c̄ are all integers and
bounded by L.

The most well-known worst-case complexity of the interior point algorithm for linear program-
ming with integer parameters is O(n̄3L̃), where n̄ is the number of variables and L̃ is the number
of bits to encode the linear programming problem. Here we use a more refined bound given in
[2]. By using this bound, we are able to prove a much better time complexity for our algorithm;
because in the linear programming problem (4), the number of constraints is often much smaller
than the number of variables. The bound we make use of for the complexity of linear programming
is O( n̄

1.5m̄1.5

ln m̄ L̄) [2]. Here, L̄ is the size of LP problem in standard form defined as follows [26]:

L̄ =⌈log(1 + |det(Āmax)|)⌉ + ⌈log(1 + ‖c̄‖∞)⌉
+ ⌈log(1 + ‖b̄‖∞)⌉+ ⌈log(m̄+ n̄)⌉,

where
Āmax = argmax

Xis a square submatrix ofĀ

|det(X)|.

Note that m̄ < n̄, so the size of Āmax is at most m̄× m̄. Therefore, we have

|det(Āmax)| ≤ m̄!Lm̄,

and
L̄ = O(m̄(log m̄+ logL) + log n̄).

Given m̄ = O(td) and n̄ = O(Nd), simple calculation shows that the total time complexity is

O

(

n̄1.5m̄1.5

ln m̄
L̄

)

= O
(

N1.5dt2.5d
)

= O
(

n
3dK+5d
4d+2K

)

.

19



A.1.4 Size of the output synthetic database

The size of synthetic dataset m is set in step 1 of the algorithm.

A.2 Analysis of the Performance of BLR on the Smooth Query Problem

In this section we prove Proposition 3.3.

Proof of Proposition 3.3. As is stated in Section 3.3, the accuracy of BLR is Õ

(

(

log |Q| log |X |
n

)1/3
)

.

So here we only need to analyze the size of the query set obtained after discretization. For every
K ∈ N, let Qα

CK
B

be the set of queries obtained by discretizing both the domain [−1, 1]d and the

range [−B,B] of the smooth functions in CB
K with precision α as described in Section 3.3. We use

the following result.

Lemma A.2. There is an absolute constant c such that

log
∣

∣

∣
Qα

CK
B

∣

∣

∣
≥ c

(

1

α

)d/K

.

Since the discretization precision is α, and the first order derivatives of the functions are bounded
by the constant B, the total error induced by discretization of the domain and range is at least α.
Thus the error of the discretized BLR is

max



Bα, Õ





(

(

1
α

)d/K

n

)1/3






 .

The proposition follows by choosing the optimal α.

Proof of Lemma A.2. Without loss of generality, we consider the case B = 1.

Define h(x) (x ∈ R
d) as follows:

h(x) =

{

exp
(

1− 1
1−‖x‖2

2

)

, ‖x‖2 ≤ 1

0. otherwise

It is well known that h(x) ∈ C∞(Rd), h(x) ∈ [0, 1], and for every d-tuple of nonnegative integers
k = (k1, . . . , kd), D

kh(x) = 0 when ‖x‖ ≥ 1. Since the partial derivatives of h are continuous and
h has bounded support, we define

MK := max
|k|≤K

max
x
|Dkh(x)|.

Since K is a constant, MK is also a constant.

Let N0 = 1/α. For simplicity we assume N0 is an integer. First we partition [−1, 1]d into
hypercubes with equal side length. Let n0 be an integer whose value will be determined later. Let
l = n0/N0 be the side length of the hypercubes. Let m0 = 1/l be the number of hypercubes along
each dimension. Denote the centers of the md

0 hypercubes as x1, . . . ,xmd
0
.
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Consider the set

F = {z = (z1, . . . , zmd
0
) : z1 ∈

{

−N0 − 1

N0
,−N0 − 2

N0
, . . . ,

N0 − 1

N0

}

,

zi ∈ {−1, 0, 1}, i = 2, 3, . . . ,md
0}.

Clearly |F| = (2N0 − 1)3m
d
0−1. For every z ∈ F , we will construct a K-smooth function fz so that

for every pair z, z′ ∈ F , fz and fz′ are still different after discretization over the domain and the
range. In particular, we require that fz and fz′ are different as long as the discretization precision
is α; it does not matter where the discretization thresholds are set. If this can be done, then

log
∣

∣

∣
Qα

CB
K

∣

∣

∣
≥ Ω(md

0).

Below, we will show that m0 can be as large as Ω
(

N
1/K
0

)

. Once this is proved, the proposition

follows.

To do this, define

fz(x) = z1 +
1

N0

md
0

∑

j=2

h (2(x − xj)/l) · zj .

Now let us look at some simple properties of the function fz. fz perturbs the constant function
z1 with linear combinations of the infinitely smooth function h shifted to each xj (the centers of
the hypercubes). Moreover, zj ∈ {−1, 0, 1} (j = 2, 3, . . . ,md

0) controls the perturbation at xj . It
can be a positive or negative perturbation or no perturbation. The magnitude of the perturbation
is 1/N0.

Note that h(2(x − xj)/l) is supported by the set

{x ∈ R
d : ‖x− xj‖2 ≤ l/2}.

For any x ∈ R
d, there exists at most one j such that h(2(x−xj)/l) 6= 0. Therefore, for any fixed x,

at most one term in the summation in (A.2) does not vanish. Also note that 1
N0

h (2(x− xj)/l) · zj
can contribute 1/N0 to the magnitude of fz. Thus for different z, z

′, fz and fz′ are always different
no matter how the discretization thresholds are put. Furthermore, if |k| ≤ K, then for every z,

|Dkfz(x)| =

∣

∣

∣

∣

∣

∣

1

N0

md
0

∑

j=2

Dkh(2(x − xj)/l)

∣

∣

∣

∣

∣

∣

≤
(

2

l

)K

MK/N0,

since the support of all the perturbation h does not overlap. In order that all the functions fz has
K-norm bounded by 1, we need

(

2

l

)K

MK/N0 ≤ 1.

The above inequality can be satisfied by setting

n0 =

⌈

2M
1/K
K N

K−1

K
0

⌉

,

Thus we have

m0 =
N0

n0
= Ω

(

N
1/K
0

)

.

The lemma follows.
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A.3 Smoothness of Linear Combination of Gaussian Kernel Functions

In this section we prove Proposition 2.1. First, we introduce a well-known inequality for Hermite
polynomial. Proposition 2.1 follows immediately from this lemma.

Lemma A.3. [20] For Hermite polynomial of degree k defined as

Hk(x) = (−1)kex2 dk

dxk
e−x2

,

where k ∈ N and x ∈ (−∞,∞), it satisfy following inequality:

|Hk(x)| ≤ (2kk!)
1

2 e
1

2
x2

.

Proof of Proposition 2.1. We only need to show that the K-norm of the Gaussian kernel func-
tion is bounded by 1 since ‖α‖1 ≤ 1.

Let g(x) = e−x2

. From Lemma A.3 we directly have:

| d
k

dxk
g(x)| = |Hk(x)e

−x2 | ≤ (2kk!)
1

2 .

Let k = (k1, . . . , kd), and |k| = K. Therefore, for f(x) defined in Proposition 2.1, we have:

|Dkf(x)| =
d
∏

j=1

dkj

dx
kj
j

g

(

xj − yj√
2σ

)

≤
(

1√
2σ

)K




d
∏

j=1

(2kjkj !)





1

2

≤ (K!)
1

2

σK
.

Obviously, when K ≤ σ2,

|Dkf(x)| ≤ K
K
2

σK
≤ 1.

The proposition follows.

A.4 Privately Estimation on Eigenvectors and Eigenvalues

In this section we prove Theorem 3.4 and the privacy guarantee (Theorem 3.6). For simplicity we
denote ||X|| the spectral norm of a matrix X.

Before we state it formally, let us take a closer look at the Theorem 3.3 in [16]: With high
probability, the tangent of the angle between the space spanned by the top-k leading eigenvectors,
namely eigenspace, and the space spanned by the output columns, namely output-space, is small,
given regularity conditions. Our goal is the column-wise convergence between eigenvectors and out-
put columns, which can be concluded from the simultaneous convergence between the increasing
sequence of eigenspaces and the increasing sequence of output-spaces, given that they shared the
same dimension. This constraint leads us to utilize a weaker version of Theorem 3.3 by specifying
r = k, but the favored column-wise convergence at least compensated for the loss of tuning param-
eter r. Note that simply applying Theorem 3.3 consecutively for the sequence will not assure the
high convergence probability 1−o(1) and our analysis can be extended to the case k = O(d), where
the dimension d can grow as the size of database given the aptitude of added noise is adequate.
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Lemma A.4. Assuming the data universe X = [−1, 1]d, for all pairs of neighbor databases D,D′

with |D| = |D′| = n, let A(D) = 1
nDDT − D̄T D̄, where D̄ is the mean of D. It holds that

||A(D)−A(D′)|| ≤ 5d

n
.

Lemma A.5. Let A = (aij) ∈ R
n×d, denote Akl = (aij)i≤k,j≤l the (k, l)-sub matrix of A for any

k ≤ n and l ≤ d, then ||Akl|| ≤ ||A||.

Lemma A.6. Let U ∈ R
d×k be a matrix with orthonormal columns. Let G(1), ...,G(L) ∼ N(0, σ2)d×k

with k ≤ d and assume that L ≤ d. Let G
(l)
s and Us be the (d, s)-sub matrix of G(l) and U respec-

tively for s ∈ [k]. Then, with probability 1− o(1),

max
l∈[L]
||UT

s G
(l)
s || ≤ O(σ

√

k logL), ∀ s ∈ [k].

Lemma A.7. Let U ∈ R
d×k be a matrix with orthonormal columns. Let G(1), ...,G(L) ∼ Lap(σ)d×k

with k ≤ d and assume that L ≤ d. Let G
(l)
s and Us be the (d, s)-sub matrix of G(l) and U

respectively for s ∈ [k]. Then, with probability 1− o(1),

max
l∈[L]
||UT

s G
(l)
s || ≤ O(σk

√

log(Lk2)), ∀ s ∈ [k].

Proof of Theorem 3.4. Letm = max ||X(L)||∞, assume the spectral decompositionA = ZΛZ−1,

and denote Λ =

(

Λ1

Λ2

)

, and Z =
(

Z1 Z2

)

, where Λ1 ∈ R
s×s and Z1 ∈ R

d×s. Next we denote

Us = Z1Λ1Z
T
1 and Vs = Z2Λ2Z

T
2 . Obviously we have A = UsΛ1U

T
s +VsΛ2V

T
s .

Let ∆(Us) ≥ maxLl=1 ||UT
s G

(l)
s || and ∆(Vs) ≥ maxLl=1 ||VT

s G
(l)
s ||, where G

(l)
s is the (d, s)-sub

matrix of G(l). By Lemma A.6, we concludes that with probability 1 − o(1), the following events
occurs simultaneously:

1. ∀ s ∈ [k],∆(Us) ≤ O(σm
√
k logL),

2. ∀ s ∈ [k],∆(Vs) ≤ O(σm
√
d logL).

Notice that for all s ≤ k, we have ∆(Us) ≤ ∆(Vs) as we set s ≤ k ≤ d/2. Since arccos θ(Us,X
(0)
s )

is bounded, where X
(0)
s is the (d, s)-sub matrix of X(0), we have for all s ≤ k

∆(Us) arccos θ(Us,X
(0)
s ) ≤ O(σm

√

k logL).

Applying Theorem 2.9 in [16], we have with probability of 1− o(1), for all s ≤ k

tan θ(Us,X
(L)
s ) ≤ O

(

σ

γsλs

√

dmax ||X(l)||2∞ logL

)

. (5)

For the case s = 1, the theorem is proved. Now for any fixed 1 < s ≤ k, notice that us is in
the space spanned by (u1, . . . ,us) as well as the orthogonal complement of the space spanned by
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(u1, . . . ,us−1), we have

sin2 θ(us,x
(L)
s )

= ||Us−1U
T
s−1x

(L)
s + (I−UsU

T
s )x

(L)
s ||2

= ||Us−1U
T
s−1x

(L)
s ||2 + ||(I−UsU

T
s )x

(L)
s ||2

≤ sin2 θ(Us−1,X
(L)
s−1) + sin2 θ(Us,X

(L)
s )

≤ 2(max{sin2 θ(Us−1,X
(L)
s−1), sin

2 θ(Us,X
(L)
s )})

≤ 2(max{tan2 θ(Us−1,X
(L)
s−1), tan

2 θ(Us,X
(L)
s )}).

(6)

The theorem, for the case s ≥ 2, is proved by substituting (5) into (6).

Proof of Corollary 3.5. Denote xs = x
(L)
s and θ(L) = θ(Us,X

(L)
s ) for short. Let xs = u + u⊥,

where u is the eigenvector corresponding to λs. Then, since u = xs cosφ and u⊥ = xs sinφ for a
φ ≤ θ(L), we have

λ̂2
s = xT

s A
2xs = uTA2u+ u⊥T

A2u⊥

= λ2
su

Tu+ u⊥T
A2u⊥ ≤ λ2

s||u||2 + λ2
1||u⊥||2

≤ λ2
s cos

2 θ(L) + λ2
1 sin

2 θ(L) = λ2
s(1− sin2 θ(L)) + λ2

1 sin
2 θ(L)

= λ2
s + (λ2

1 − λ2
s) sin

2 θ(L).

Thus,

|λ̂s − λs| ≤
(λ2

1 − λ2
s)

λ̂s + λs

sin2 θ(L) = O(
σ2dmax ||Xl||2∞ logL

γ2sλ
2
s

).

The corollary follows.

Proof of Theorem 3.6. Follows the Lemma 3.6 in [16].

A.5 Experiments Results: Simple Approach to Get Subset

In this section we give the setting of the number of basis function R in our experiment and provide
the experiment results with subset S sampled from Nd grids uniformly.

Let

R =







C̃n
d

2d+σ2 ǫ-differential privacy,

C̃n
2d

3d+2σ2 (ǫ, δ)-differential privacy,

where C̃ is a constant and we chose C̃ = 0.5.

All the results in Table 5 and Table 6 are the average results on independent experiments over
20 rounds. Compare to Table 3 and Table 4, the worst-case error obtained through PSI reduced
significantly.
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Table 5: Worst-case error of ǫ-differential privacy (hypercube)

Dataset Error
σ

Time(s)
2 4 6 8 10

CRM
Abs 0.001 0.028 0.035 0.031 0.031

7.2
Rel 1.721 0.226 0.101 0.051 0.046

CTG
Abs 0.089 0.075 0.050 0.028 0.017

1.8
Rel 0.796 0.139 0.066 0.033 0.019

PAM
Abs 0.111 0.160 0.097 0.062 0.043

9.7
Rel 0.646 0.255 0.121 0.070 0.047

PKS
Abs 0.071 0.079 0.050 0.027 0.017

3.4
Rel 0.655 0.154 0.068 0.032 0.019

WDBC
Abs 0.040 0.062 0.029 0.019 0.015

2.7
Rel 0.309 0.137 0.037 0.022 0.017

Table 6: Worst-case error of (ǫ, δ)-differential privacy (hypercube)

Dataset Error
σ

Time(s)
2 4 6 8 10

CRM
Abs 0.001 0.027 0.041 0.034 0.027

14.5
Rel 1.773 0.258 0.093 0.054 0.039

CTG
Abs 0.103 0.075 0.042 0.024 0.019

2.6
Rel 0.884 0.140 0.055 0.028 0.021

PAM
Abs 0.101 0.158 0.104 0.067 0.042

15.3
Rel 0.595 0.253 0.128 0.076 0.046

PKS
Abs 0.099 0.086 0.048 0.027 0.022

3.2
Rel 0.924 0.165 0.065 0.032 0.025

WDBC
Abs 0.040 0.046 0.040 0.021 0.019

3.3
Rel 0.340 0.099 0.057 0.026 0.021
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